Welcome to the final article in this blog series on Industry 4.0! In this series, we address unanswered questions and roadblocks surrounding the term and its implementation in factories or small job shops. We tackle the what, why, and how of Industry 4.0, and why it should matter to you. Our previous article discussed why data matters in Industry 4.0 and how to become Industry 4.0-ready. In this article, we'll finish the series by covering what data matters and 3 crucial factors to consider when implementing data-driven stamping. Full knowledge about every detail involved in a manufacturing process is ideal. But, collecting, storing, and processing a vast amount of data is challenging. Industry 4.0 is the vision where machines provide the data that can then be processed by computers which are capable of storing large amounts of data and performing complex computations in real-time. The efficacy of the data process algorithm depends on the completeness and accuracy of the data and the intelligence built into it. Industry 4.0 is ideal to be attained over time because it seems to be virtually open-ended. In relation to this, our goal is to provide a good starting point. Starting Point: 3 Crucial Factors to Consider Gathering, storing, organizing, and prioritizing data Many do not even know where to begin and suffer from information paralysis. It is impossible to anticipate all the requirements upfront. One must become comfortable to view the transformation as a journey, rather than perfect out of the box. It is okay, or even necessary, to organize and prioritize before gathering and storing information. It is paramount to question what information already exists, how it is stored, and how it is used. Why not start with data that is already available? Discoveries of the existence of information that no one is aware of are not uncommon. Remember that with Industry 4.0, computers can relay commands to machines to take corrective actions. Therefore, it is important to filter out data that is not relevant and prioritize the relevant information. Ask yourself, “What data or information is already available, easily retrievable, and easily communicated with stakeholders?” As far as a starting point for collecting data, some elementary data can be gathered and processed by simple means. The most basic data that should be part of any KPI metric is: Is the equipment in operating condition? If the answer is No: Questions that determine why it is not in operating condition, what needs to be done to restore operation, and when the equipment is back in service will be the governing path. If the answer is Yes: The next question would be: Is the equipment operating? If No – why not? If yes, is it producing good parts? These basic yes or no questions can be answered with simple means. However, the answers to the why questions are not so straightforward, and therefore cannot be further processed until a concise, binary reporting system exists. The accessibility and ease of distributing data If not existing in a raw format, data may be easily retrievable by running a report from an ERP system. The following questions can help uncover if there is an issue with the distribution or accessibility of information: Do the stakeholders know that the information exists? Do the stakeholders know how the information can benefit them? Do the stakeholders know where to find the information? Do the stakeholders work off the same information? Do the stakeholders have to provide information? Is the information accurate, complete, and reliable? Does the information need to be protected, and to what level? Is there accountability for the information provided, or its use? The use and misuse of information Information is power; hence, as soon as data is collected, one must consider its use and misuse. The importance of managing the storage, distribution, and access cannot be overstated! While Industry 4.0’s focus is on the use of information, it cannot ignore the threats that come with it. There is an entire security aspect to the data world. It may be costly and possibly dangerous to collect and manage information that will not lead to a decision or an action. However, it may be necessary to act pre-emptively by gathering data, even without immediate use, for the future. For example, some machine data may contain useful information, but no processing algorithm exists. Should the data drive the development of the algorithm (Bottom Up approach) or should the intelligence demand the necessary data (Top Down approach)? The current day affairs suggest that it is the combination of both approaches. Who's Best Positioned to Progress in the Digital Transformation? Companies that effectively aggregate and relay available information have already a culture of data-driven decision-making. These are well-positioned to progress in the digital transformation. Companies that don’t have this culture will fall further and further behind. Unfortunately, there are still too many companies that operate ad-hoc, or with an “always done it this way” mentality. Leaders of Industry 4.0 will be highly automated industries and factories. Here’s why. If you compare a highly automated factory containing lots of robots to one with very little or no automation, you may come to the following conclusions about the latter’s operators and production processes: Biased, subjective statements about data and production processes Limited memory and intelligence due to human limitations Need instructions Don’t follow instructions Cannot be controlled A huge reason highly automated industries and factories are best positioned to achieve Industry 4.0 is that they don’t have the roadblocks of human bias, human limitation, and process inefficiency. Essentially, highly automated factories with robots can do it better, faster, and more precisely than humans. Flexibility vs. Efficiency: Where Do You Fall? Aside from having the right mindset and possessing a culture of continuous improvement, there’s another force at play with data-driven stamping. This second force is more pragmatic: flexibility vs. efficiency. Ideally, you want your production processes to strike the perfect balance between flexibility and efficiency. In some industries and factories, this perfect balance exists, but for many of us, manufacturers lean toward one side of the scale. Automotive manufacturers are a great example. Their factories are highly automated and focused on high volume, low mix, and mass production consumables. They benefit from efficiency but lack the flexibility to pivot to other product lines. As Alastair Orchard, VP of SIEMENS puts it, “An automotive factory is incredibly efficient, but not flexible”. Unless they spend a fortune to build a factory that accommodates this flexibility and automation and pays off the investment with continual high product demand, Orchard’s statement still rings true. Aside from mass production automotive manufacturers, what about the typical stamper? Where do they fall? Many will fall into the third category: low volume/high mix, focused on capability + set-up, and with the advantage of specialized, customized fabrication. This means that they are more flexible than efficient. This also means that there’s less automation happening in their facilities. Since these stampers focus more on capability than meeting high production demands, they also have less incentive to collect data that will improve production efficiencies. Final Thoughts The benefits and importance of reliable and complete information have been previously discussed. Data can be used to observe trends and to compare actual performance with historical performance, or a benchmark. As previously observed, raw data is honest and true if the measuring system is reliable. This is in itself a huge advantage because humans communicate with biases and emotions. In the automation world, data gives you an edge over existing production systems. Once you understand the role, importance, and impact of data-driven stamping within the digital transformation of Industry 4.0, you can then start to implement it. We hope this series on Industry 4.0 provided a practical breakdown of how digital transformation applies to stampers. We also hope you gained helpful insight and answers to the question, “What is Industry 4.0 and why should it matter to you?” Please feel free to leave a comment below or reach out if you have any questions, thoughts, or ideas to add. We're always happy to chat with you! Sangiacomo Presses Americas is ready to help you optimize your stamping press operations with our adjustable stroke press. Learn more about our stamping presses by visiting our main website here. Still considering your options? Our helpful sales reps will gladly answer any questions or concerns you have. Contact us today at 256-275-4701 or email us at info@sangiacomo-presses.com.
Welcome to the second article in this blog series on Industry 4.0! In this series, we address unanswered questions and roadblocks surrounding the term and its implementation in factories or small job shops. We tackle the what, why, and how of Industry 4.0, and why it should matter to you. Our previous article discussed the basics of Industry 4.0 and the obstacles to embracing data-driven stamping operations. In this article, we’ll do a deep dive into the mechanisms of Industry 4.0 as they relate to the importance of data, the cyber-physical system (CPS), and how they relate to data-driven stamping operations. In short, we will cover why data matters in Industry 4.0 and how to become Industry 4.0-ready. Why Data Matters in Stamping Operations Have you ever experienced the frustration of being stopped at a red light with you and a line of cars, while there is virtually no cross traffic? Chances are you have, and you wish there were a better traffic light system to control traffic. What if traffic lights could go a step beyond timers and sensors to actually detect cars from afar and actually control them by accelerating and slowing them down, eliminating the need for traditional traffic lights altogether? How do traffic lights relate to Industry 4.0, you might ask? If Industry 4.0 is all about the exchange of data between the physical and cyber world to control a machine, then traffic lights serve as an excellent example of why data matters. Specifically, achieving a more efficient traffic light system starts with collecting the right data, understanding it, and knowing what to do with it. This same principle applies to data-driven stamping operations. Case in Point Regardless of industry, company size, and business, seasoned machine operators know much about the equipment they operate. They observe patterns, try different remedies to avoid nuisance faults, or find synergies to make their jobs easier. If asked, operators can articulate problems with the production process. However, this information resides within the operator and is subjective. For example, an operator may say that there are “dozens of misfeeds” when starting a new production batch. The operator may have an opinion about the cause, but may not be able to determine if the misfeeds are caused by the improper procedure, maintenance issues, or even a machine design flaw. Operators are typically not trained to question matters outside of their environment. Quite the opposite occurs-- they are often discouraged from doing so. Operators do not have the tools and expertise to make a compelling case to management, but data does. Below, let’s look at how would the statement of “experiencing dozens of misfeeds” in the example above might look, as expressed in a digital format: Batch 1 8:03:01 Batch start 8:03:03 Mis-feed 8:03:56 Run 8:04:01 Mis-feed 8:05:12 Run 8:10:38 Batch complete Batch 2 8:17:59 Batch start 8:20:05 Mis-feed 8:21:12 Run 8:24:26 Batch complete Aggregated in a table: Batch 1 2 Run Time 5:33 5:20 Number of Mis-feeds 2 1 Down Time Due to Mid-feeds 2:04 1:07 Total Time 7:37 6:27 The data reveals that the claim of experiencing misfeeds “dozens of times” is rather an expression of frustration, than an estimated count of occurrences. It's certainly not reflecting the number of misfeeds per batch. The data also shows that the misfeeds do not happen at the start of a batch only. Once a system records data, trends can be observed which may not be as obvious as the above. Suppose the same data was tracked in an identical production system, perhaps in a different part of the world, with the following results: Batch 1 2 Run Time 7:14 7:20 Number of Mis-feeds 0 0 Down Time Due to Mis-feeds 0 0 Total Time 7:14 7:20 Takeaways Data helps identify possible reasons for misfeeds. Looking at the total time for production would indicate that the two plants operate with comparable efficiencies. Since each plant is incentivized to achieve the highest efficiencies, you could conclude that the first plant is more efficient by producing two batches in 14 minutes and 4 seconds compared to the second plant with 14 minutes and 34 seconds. But the second plant has a more tightly controlled process which helps the workflow. Those gains could be far greater than the gain in the average cycle time of plant one. Data helps identify ways to increase stamping efficiencies. Variation at plant one is mainly caused by misfeeds. Running at the production speeds of plant one without misfeed would yield a 2-minute saving per batch, and increase efficiencies by 25% in both plants! The more data, the better. If you investigate the time between batches, the data reveals questions that ought to be asked. The timing from plant one shows over 7 minutes time gap between the end of batch one and the beginning of batch two. Does the second plant have the same time gap? What is the reason for this gap? To address the latter question, the data system would need to be expanded so that the gap can be explained. Then, compare it to a benchmark, similarly as was done in the above example. Hence, the more data, the better. The Role of Data in Stamping Operations Data plays an important role in data-driven stamping. But, it’s important to understand how it’s used just as much as why it’s used. The process and logic it takes to improve your stamping operations come, in part, from an important concept in Industry 4.0—the cyber-physical system (CPS). CPSs provide value creation (i.e. more efficient traffic lights) by using the cyber world to sense, recognize, and understand data from the physical machines in order to ultimately analyze, predict, optimize, plan, and autonomously control the machines and processes. Essentially, CPSs provide a way for physical machines and cyber networks to exchange bidirectional communication with each other and use raw data to be translated into value-creation insight and predictions for better and more efficient stamping operations in the factory. In a stamping factory, this process could look like this: While a press (physical world) is continuously running a job, the Manufacturing Execution System (MES) (cyber world) receives process data and status data from the press with each stroke. Ex of process data: order no., stroke rate, press force values, no. parts, stroke counter, etc. Ex of status data: operating status (engaged, disengaged), alarm, events, error data, etc. The MES uses this data to analyze, predict, optimize, plan, and control the press. During continuous press operation, run: The end result could be to autonomously adjust the process or predict when intervention is needed. During continuous press operation, stop: The end result could be service help or a new job set-up. The word “data” is used a lot here, but what type of data are we talking about exactly? In the next article titled “Industry 4.0: Data-Driven Stamping, Part 2”, we’ll cover what data matters and how to use it for value creation. We’ll also explain what kind of stampers are best positioned to achieve Industry 4.0. Sangiacomo Presses Americas is ready to help you optimize your stamping press operations with our adjustable stroke press. Learn more about our stamping presses by visiting our main website here. Still considering your options? Our helpful sales reps will gladly answer any questions or concerns you have. Contact us today at 256-275-4701 or email us at info@sangiacomo-presses.com.
Welcome to the first article in this blog series on Industry 4.0! In this series, we'll address unanswered questions and roadblocks surrounding the term and its implementation in factories or small job shops. We'll tackle the what, why, and how of Industry 4.0, and why it should matter to machine manufacturers and suppliers alike. By now, you’ve probably heard of the buzzword humming in your social media, conference rooms, and industry news outlets. You guessed it—“Industry 4.0”. Let's go over this term’s origin, why it’s relevant, and why this latest revolution has been challenging for some to embrace and implement. In this article titled Industry 4.0: Manufacturing Then vs. Now, we'll cover the following: What is Industry 4.0 and Why is it Relevant? Industry 4.0: Then vs. Now 4 Obstacles to Embracing Industry 4.0 Moving Forward with Industry 4.0 What is Industry 4.0 and Why is it Relevant? Interconnected devices are nowadays commonplace in households with phones, Smart TVs, security cameras, appliances, etc. Thanks to the quick adoption of Industry 4.0 (I4.0) in these industries, the convenience of insight gained from these commonly interconnected devices is done with ease—at least to the common consumer’s eyes. However, if you take a closer look at Industry 4.0 adoption, you’ll see that it’s not so simple after all. When considering Industry 4.0 adoption, there are big differences between industries. This is especially true for the traditional manufacturing industry. For industrial machinery, the intricacies and risks of implementing two-way communication between machinery and computers are much more apparent. This is in part because our industry is historically characterized by lethargy, risk aversion, and resistance to change. This helps explain why the adoption of interconnectivity and the use of data has been slower in industry and between different industries. Notoriously, the adoption of Industry 4.0 in traditional manufacturing has been much slower than in modern technologies, such as additive manufacturing, and in logistics or healthcare. Industry 4.0: Then vs Now To understand more about the buzzword that’s gotten people talking, let’s go over how we got to Industry 4.0 over centuries of innovation: Industry 1.0 The first industrial revolution occurred in the mid to late 18th century, when much of the hand labor was replaced by mechanical devices. Industry 2.0 Near the end of the 19th century, electrification marked the second industrial revolution where mechanical devices were replaced by independently powered machines. Industry 3.0 The third industrial revolution started in the mid-20th century with the arrival of the programmable logic controller. Automation has radically transformed manufacturing ever since. Industry 4.0 The fourth and current industrial revolution grew out of an effort launched by the German government to promote the computerization of traditional manufacturing. The aim of the research was to realize a smart factory by connecting machines based on the Internet of Things (IoT). The term Industry 4.0 was publicly introduced at the 2011 Hannover Fair to indicate that the use of machine data would radically transform manufacturing like the previous three industrial revolutions. 4 Obstacles to Embracing Industry 4.0 Small-size and even mid-size companies are cautious or struggle with implementing Industry 4.0. Here are four possible obstacles to embracing Industry 4.0: Lack of clarity. Companies lack clarity on how to transition to a digital data-driven manufacturing process. In addition, over 850 terms and acronyms are now associated with Industry 4.0 (Fachlexikon MES & Industry 4.0, L. Schleupner, MES D.A.CH Verband e. V). Depending on the industry, equipment manufacturers are equally slow in investing in the technology until it is clear that efforts will help their bottom line or until they're forced to do more. Currently, most of the equipment can be connected to a network which makes them Industry 4.0 ready, but that in itself is useless without software for data exchange. No established software platform. Without a clear winner, the adoption of a software standard stalls until an established software platform is apparent. Remember in the 1980s when consumers delayed video cassette purchases until there was a declared winner between the VHS (Sony) and Beta Max (Toshiba) formats? Decades later, a similar battle ensued between the HD DVD and Blue Ray formats. A similar situation is at hand here with the adoption of I4.0. Security and financial risks. Data exchange software and networked machines require proper security and network maintenance to prevent havoc caused by hackers, automatic updates, malware, and outages. Most companies cannot handle such an IT burden. Reluctant company culture and management. Many factors are at play here, but risk-aversion in company culture and management is one reason that some companies are not willing to embrace a revolutionary change or let data speak. On one hand, it may be due to an inherent resistance to change, or fear about what the data may reveal. In most cases, though, it's an uncomfortable truth that keeps them from embracing change. However, that is exactly the fundamental driver of Industry 4.0— the removal of human biases and limitations such as egos, forgetfulness, stubbornness, etc., and personal politicking. A blog by Pardhasaradhi Reddy Chelikam on the SAP website summarizes the obstacles of digital transformation as follows: High capital investment Business model adaptation Unclear ROI (Return on investment) Lack of adequate skill set to expedite the transformation towards I4.0 functionalities IT security issues (Letting critical process networks open) Reliability/stability of communications between machine-to-machine/user interfaces Reluctance to change management IT system outages/failures that would cause huge re-investment Moving Forward with Industry 4.0 The most common obstacle verbalized is that business is too hot and the human resources are too few. This means that still, so many have not even invested enough to arrive at the above-cited objections. But this trend is changing, as Tim Heston noted in the December 2022 issue of the Fabricator. The focus is shifting from capacity and capability, towards reliability and efficiency. So, we’ve gone over the background, history, importance, and obstacles of Industry 4.0. But how do you overcome those obstacles to embrace the idea of a smart factory? It starts with examining what’s within your reach and control. In the next segments of this blog series, we’ll cover why data matters in Industry 4.0, and what kind of data to start tracking. Stay tuned and subscribe to our blog for more on this. Sangiacomo Presses Americas is ready to help you optimize your stamping press operations with our adjustable stroke press. Learn more about our stamping presses by visiting our main website here. Still considering your options? Our helpful sales reps will gladly answer any questions or concerns you have. Contact us today at 256-275-4701 or email us at info@sangiacomo-presses.com.
In case you missed it, René Zwahlen--president of Sangiacomo Presses Americas and Director of Operations for Bruderer Machinery, Inc.-- spoke about the mechanisms of high-speed stamping processes at the last PMA Technical Webinar. In his presentation, Zwahlen went over the key aspects of high-speed stamping presses that are generally overlooked or not well understood. High-speed stamping presses can operate at 2000 strokes/min. and more. At these production speeds, dynamic forces and thermal influences dramatically affect the stamping process. He took listeners on a journey of understanding the mechanisms to counteract these influences and explained why these types of presses are more precise than conventional stamping presses. Below is a video recap of the Q & A portion of the webinar where audience members submitted questions. Check it out! Video Summary How do you determine the proper stroke height for your part? A: Primarily by shape and size of the part. As a starting point, you want to double the height of the part when determining the proper stroke height. However, whatever your stroke height is, it's crucial to use the shortest stroke in order to optimize your stamping speed. In a high-speed stamping press, what's the best way to thread a strip through the die? A: First, you'll need to troubleshoot the cause for misthreaded strips. Check alignment in relation to the die. Next, consider how level the strip is fed through the die. Lastly, consider your oil seal barriers. Is stroke height a fundamental feature of the press itself? A: Yes, that's correct. This feature would have to be mechanically adjusted. Sangiacomo makes an adjustable stroke press for this very reason. If you liked this post, don't forget to subscribe to our blog to see more content like this!
2022 marks the 66 years anniversary for the parent company of Sangiacomo. CMBB started producing presses in 1956. It became later part of the SECCO group until it was split off in 1972, where it continued to operate under the Sangiacomo name. Over the decades, tens of thousands of machines have been sold, predominantly in the European market, showcasing the robust reputation our presses have garnered. About Us Since the inception of Sangiacomo, the primary goal has been to produce high-quality presses at a reasonable price. All of our mechanical press parts are designed and machined at the Sangiacomo facility in Vittorio Veneto, near Venice, Italy. This ensures each press provides the user with unmatched flexibility, quality, and reliability. The elephant in our logo, serves as a universal symbol of strength, and encapsulates our unwavering commitment over decades to superior machine design and excellent quality. This emblem underscores our serious dedication to uphold and deliver robust, reliable machinery. Since 2014, Sangiacomo Presses Americas has been the Official Distributor for the North and South American continents. Our in-stock presses are available for viewing at our showroom in Huntsville, Alabama. Spare parts and service technicians are dispatched from the Huntsville facility, while our sales and support offices in New Jersey, California, Indiana, and Sao Paulo (Brazil) ensure prompt service. Our Presses We specialize in mechanical presses with adjustable stroke lengths and custom add-ons for all your press needs. We offer c-frame/OBI and straight side presses as well as complete production solutions by providing presses, feeding systems, molds, and conveyors. Our dedication to quality extends to the selection of purchased components. Our electrical controls feature products from leading brands such as Schneider, SIEMENS, PILZ, and Allen-Bradley. Adjustable Stroke Length A distinctive feature of Sangiacomo presses is the adjustable stroke length, ranging from very small, well-suited for blanking, to impressively long for draw forming applications. The benefits of our adjustable stroke feature include faster die changes, increased productivity and flexibility, reduced downtime and repair costs, and a 50% longer tool life. Changing the stroke is straightforward and takes only minutes. The NC control option on larger press models (T80 and up) provides a fully automated stroke length change based on the setting stored in the tool programs. Integrated Safety Mechanisms All presses manufactured by Sangiacomo include standard safeguarding mechanisms. The front doors open for point-of-operation access and are redundantly interlocked. The side guards can be swung open to allow full access to the die area. They are also interlocked with electromagnetic sensors. Many safeguarding options, such as light curtains, are available. Guards can also be custom configured to enclose a feeder or extra-large dies if needed. All presses are CE Certified and comply with the most stringent European norms as well as ANSI, OSHA, and Canadian standards. Custom Add-ons Looking to tailor your Sangiacomo press to align perfectly with your stamping requirements? We offer a variety of add-ons, such as tie rods for increased frame strength, rapid die tooling for expedited tooling changeovers, among others. Given that the frame is crafted in Vittorio Veneto, customizations are seamlessly executed, expanding the horizon of possibilities. Sales and Service At Sangiacomo our sales and technical service team work closely with you before, during, and after the sale to ensure your needs are addressed and exceedingly met. Replacement parts are commercially available worldwide, ensuring minimum replacement cost and high serviceability for your presses. PLC programs are stored on SD cards. Thus, replacements are as easy as transferring a memory card. We are here to help you with all of your stamping needs! Please contact us at any time to talk to one of our experts, and take the first step towards experiencing the Sangaicomo advantage.
Welcome to our Blog! Thanks for stopping by to check out Sangiacomo Presses Americas. We are the official distributor of c-frame and straight-side mechanical stamping presses in North, South, and Central America. All of our presses are equipped with adjustable (or variable) stroke lengths. We specialize in adjustable stroke presses and are dedicated to educating the industry about how this one feature significantly improves production efficiency, reduces tool changeover times, and saves money in the long run. You can learn more about the benefits of adjustable stroke length here. Don't forget to subscribe to our blog in order to stay up to date on all the educational topics we post, as well as big announcements and company updates! Some topics we plan to cover: Stamping Presses 101 Precision Metal Stamping Tools & Dies The technology behind Adjustable Stroke Lengths Case Studies Customer Testimonials Industry 4.0 In the meantime, feel free to get familiar by following us on Facebook, LinkedIn, and Youtube. Please leave any ideas, suggestions, or concerns in the comments below!